home *** CD-ROM | disk | FTP | other *** search
- set echogrammar standard;
- /*
- Running demo, a test batch file.
-
- Entering a simple formula: */a-b;
- /*
- generating a simple radical
-
- */
- rad:%^(1/2);
- /*
- Now that the simple radical has been defined, it will split any
- radicals of which it is a factor
-
- */
- rad2:(a^2-b^2)^(1/2);
- /*
- The total differential is:
-
- */
- %';
- /*
- The derivative with respect to b is:
-
- */
- diff(rad2,b);
- /*
- lets try generating a 3rd order field extension
-
- */
- foo3:{a|a^3+a*x+y};
- /*
- does the original formula extinguish the extension?
-
- */
- verify(%^3+%*x+y,0);
- /*
- now, lets see what the derivative
- in terms of the field extension is
-
- */
- foo3';
- /*
- The derivative with respect to x is:
-
- */
- diff(foo3,x);
- /*
- Non-commutative partials example from Tom M. Apostol, Mathematical
- Analysis, Addison-Wesley Publishing Co., 1957
-
- */
- Af(x,y) : x*y*(x^2-y^2)/(x^2+y^2);
- Df1 : partial(Af,1);
- Df2 : partial(Af,2);
- verify(-y,Df1(0,y));
- verify(x,Df2(x,0));
- verify(partial(Df1(0,@2),@2),-1);
- verify(partial(Df2(@1,0),@1),1);
-
- verify([[1,0],[-2,1]],[[1,0],[-1,1]]^^2);
- mp:[2*x-(a-1)*y=5*b,a*x+b*y+c=0];
- coefmatrix(mp,[x,y]);
- d2:augcoefmatrix(mp,[x,y]);
- /*
- echelon(d2);
- triangularize(d2);*/
- rank(d2);
- amatrix:[[3,1],[2,4]];
- charpoly(amatrix,lam);
- /*
- variables can be eliminated from expressions and equations, even
- involving radicals and functions.
-
- */
- eliminate([a^2/c+a^(1/2)+f(a,b,c),a=b/c],a);
- verify(%,(b^2 + f(b/c, b, c) * c^3 + c^2 * b^(1/2) * c^(1/2))/c^3);
- /*
- done
-
- */
- set echogrammar null;
-